The widespread use of wireless technology is rapidly increasing our exposure to radiofrequency radiation (RFR).
There is now substantial published, peer-reviewed scientific evidence indicating that wireless radiation can have a variety of harmful effects–even at levels that governments currently allow. Hundreds of research studies have linked wireless RFR to numerous effects, including harmful impacts to memory, brain development, reproduction, behavior, emotional problems, headaches, and DNA, as well as increased thyroid cancer and brain tumor risk.
Studies show that children absorb more intense levels of radiation deeper into their brain compared to adults because they have thinner skulls, smaller heads and a higher water content in their brains.
Pediatricians have long called for an update to cell phone radiation regulations because research finds children can absorb up to 10 or more times higher radiation than adults into their brain, eyes and bone marrow.
Today’s children will have a higher lifetime exposure to wireless radiation than previous generations. Children are more vulnerable to cell phone radiation because their rapidly developing brains are more sensitive.
Where can I find links to published research on the health effects of non-Ionizing electromagnetic radiation ?
The compilation below is just a small sampling of the numerous research studies and articles documenting adverse effects.
This is a very short list of papers to begin your journey of understanding the published science.
Bandara, P., & Carpenter, D. O. (2018). Planetary electromagnetic pollution: It is time to assess its impact. The Lancet Planetary Health, 2(12), e512–e514.
Belpomme, D., Hardell, L., Belyaev, I., Burgio, E., & Carpenter, D. O. (2018). Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. Environmental Pollution, 242, 643–658.
Genuis SJ. (2008). Fielding a current idea: exploring the public health impact of electromagnetic radiation. Public Health. Feb;122(2):113-24.
Miller, A. B., Sears, M. E., Morgan, L. L., Davis, D. L., Hardell, L., Oremus, M., & Soskolne, C. L. (2019). Risks to Health and Well-Being From Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Frontiers in Public Health, 7.
Miller, A. B., Morgan, L. L., Udasin, I., & Davis, D. L. (2018). Cancer epidemiology update, following the 2011 IARC evaluation of radiofrequency electromagnetic fields (Monograph 102). Environmental Research, 167, 673–683.
Panagopoulos, D. J., Johansson, O., & Carlo, G. L. (2015). Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity. Scientific Reports, 5, 14914.
Children’s Vulnerability
Hardell, L. (2018). Effects of Mobile Phones on Children’s and Adolescents’ Health: A Commentary. Child Development, 89(1), 137–140.
Kelley, E., Blank, M., Lai, H., Moskowitz, J., & Havas, M. (2015). International Appeal: Scientists call for protection from non-ionizing electromagnetic field exposure. European Journal of Oncology, Volume 20, 180–182.
Lissak, G. (2018). Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environmental Research, 164, 149–157.
Miller, A. B., Sears, M. E., Morgan, L. L., Davis, D. L., Hardell, L., Oremus, M., & Soskolne, C. L. (2019). Risks to Health and Well-Being From Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Frontiers in Public Health, 7.
Moon, J.-H. (2020). Health effects of electromagnetic fields on children. Clinical and Experimental Pediatrics, 63(11), 422–428.
Redmayne, M., & Johansson, O. (2015). Radiofrequency exposure in young and old: Different sensitivities in light of age-relevant natural differences. Reviews on Environmental Health, 30(4), 323–335.
Sage, C., & Burgio, E. (2018). Electromagnetic Fields, Pulsed Radiofrequency Radiation, and Epigenetics: How Wireless Technologies May Affect Childhood Development. Child Development, 89(1), 129–136.
Childrens Higher Exposures
Cabot, E., Christ, A., Bühlmann, B., Zefferer, M., Chavannes, N., Bakker, J. F., van Rhoon, G. C., & Kuster, N. (2014). Quantification Of RF-exposure of the Fetus Using Anatomical CAD-Models in Three Different Gestational Stages. Health Physics, 107(5), 369–381.
Fernández, C., de Salles, A. A., Sears, M. E., Morris, R. D., & Davis, D. L. (2018). Absorption of wireless radiation in the child versus adult brain and eye from cell phone conversation or virtual reality. Environmental Research, 167, 694–699.
Fernández-Rodríguez, C. E., De Salles, A. A. A., & Davis, D. L. (2015). Dosimetric Simulations of Brain Absorption of Mobile Phone Radiation–The Relationship Between psSAR and Age. IEEE Access, 3, 2425–2430.
Ferreira, J., & Almeida de Salles, A. (2015). Specific Absorption Rate (SAR) in the head of Tablet users. The 7Th IEEE Latin-American Conference On Communications (Latincom 2015), 1538, 5-9. Retrieved 3 June 2020.
Gandhi, O. P. (2015). Yes the Children Are More Exposed to Radiofrequency Energy From Mobile Telephones Than Adults. IEEE Access, 3, 985–988.
Gandhi, O. P., Morgan, L. L., de Salles, A. A., Han, Y.-Y., Herberman, R. B., & Davis, D. L. (2012). Exposure Limits: The underestimation of absorbed cell phone radiation, especially in children. Electromagnetic Biology and Medicine, 31(1), 34–51.
Mohammed, B., Jin, J., Abbosh, A. M., Bialkowski, K. S., Manoufali, M., & Crozier, S. (2017). Evaluation of Children’s Exposure to Electromagnetic Fields of Mobile Phones Using Age-Specific Head Models With Age-Dependent Dielectric Properties. IEEE Access, 5, 27345–27353.
Siervo, B., Morelli, M. S., Landini, L., & Hartwig, V. (2018). Numerical evaluation of human exposure to WiMax patch antenna in tablet or laptop. Bioelectromagnetics, 39(5), 414–422.
Need For More Protective Government Safety Limits
Alster, N. (2015). Captured agency: How the Federal Communications Commission is dominated by the industries it presumably regulates. Harvard University: Cambridge, MA, USA.
Barnes, F., & Freeman, J. E. R. (2022). Some thoughts on the possible health effects of electric and magnetic fields and exposure guidelines. Frontiers in Public Health, 10.
Belyaev, I. (2010). Dependence of non-thermal biological effects of microwaves on physical and biological variables: Implications for reproducibility and safety standards. European Journal of Oncology Library, 5, 187–218.
Gandhi, O. P. (2019). Microwave Emissions From Cell Phones Exceed Safety Limits in Europe and the US When Touching the Body. IEEE Access, 7, 47050–47052.
Georgiou, C. D., Kalaitzopoulou, E., Skipitari, M., Papadea, P., Varemmenou, A., Gavriil, V., Sarantopoulou, E., Kollia, Z., & Cefalas, A.-C. (2022). Physical Differences between Man-Made and Cosmic Microwave Electromagnetic Radiation and Their Exposure Limits, and Radiofrequencies as Generators of Biotoxic Free Radicals. Radiation, 2(4), 285–302.
Hardell, L. (2017). World Health Organization, radiofrequency radiation and health—A hard nut to crack (Review). International Journal of Oncology, 51(2), 405–413.
Hardell, L., & Carlberg, M. (2020). [Comment] Health risks from radiofrequency radiation, including 5G, should be assessed by experts with no conflicts of interest. Oncology Letters, 20(4), 1–1.
Hardell, L., Nilsson, M., Koppel, T., & Carlberg, M. (2021). Aspects on the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2020 Guidelines on Radiofrequency Radiation. Journal of Cancer Science and Clinical Therapeutics, 5(2), 250–285.
Lai, H., & Levitt, B. B. (2022). The roles of intensity, exposure duration, and modulation on the biological effects of radiofrequency radiation and exposure guidelines. Electromagnetic Biology and Medicine, 41(2), 230–255.
Pall, M. L. (2015). Scientific evidence contradicts findings and assumptions of Canadian Safety Panel 6: Microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequency electromagnetic field action. Reviews on Environmental Health, 30(2), 99–116.
Redmayne, M. (2016). International policy and advisory response regarding children’s exposure to radio frequency electromagnetic fields (RF-EMF). Electromagnetic Biology and Medicine, 35(2), 176–185.
Uche, U. I., & Naidenko, O. V. (2021). Development of health-based exposure limits for radiofrequency radiation from wireless devices using a benchmark dose approach. Environmental Health, 20(1), 84.
Fertility and Reproduction
Adams, J. A., Galloway, T. S., Mondal, D., Esteves, S. C., & Mathews, F. (2014). Effect of mobile telephones on sperm quality: A systematic review and meta-analysis. Environment International, 70, 106–112.
Chen, H.-G., Wu, P., Sun, B., Chen, J.-X., Xiong, C.-L., Meng, T.-Q., Huang, X.-Y., Su, Q.-L., Zhou, H., Wang, Y.-X., Ye, W., & Pan, A. (2022). Association between electronic device usage and sperm quality parameters in healthy men screened as potential sperm donors. Environmental Pollution (Barking, Essex: 1987), 312, 120089.
Desai, N.R., Kesari, K.K. & Agarwal, A. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod Biol Endocrinol 7, 114 (2009).
Esmailzadeh, S., Delavar, M. A., Aleyassin, A., Gholamian, S. A., & Ahmadi, A. (2019). Exposure to Electromagnetic Fields of High Voltage Overhead Power Lines and Female Infertility. The International Journal of Occupational and Environmental Medicine, 10(1), 11–16.
Hassanzadeh-Taheri, M., Khalili, M. A., Hosseininejad Mohebati, A., Zardast, M., Hosseini, M., Palmerini, M. G., & Doostabadi, M. R. (2022). The detrimental effect of cell phone radiation on sperm biological characteristics in normozoospermic. Andrologia, 54(1), e14257.
Houston, B. J., Nixon, B., King, B. V., De Iuliis, G. N., & Aitken, R. J. (2016). The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction (Cambridge, England), 152(6), R263–R276.
Jangid, P., Rai, U., Sharma, R. S., & Singh, R. (2022). The role of non-ionizing electromagnetic radiation on female fertility: A review. International Journal of Environmental Health Research, 0(0), 1–16.
Kesari, K. K., & Behari, J. (2010). Effects of microwave at 2.45 GHz radiations on reproductive system of male rats. Toxicological & Environmental Chemistry, 92(6), 1135–1147.
Maluin, S. M., Osman, K., Jaffar, F. H. F., & Ibrahim, S. F. (2021). Effect of Radiation Emitted by Wireless Devices on Male Reproductive Hormones: A Systematic Review. Frontiers in Physiology, 12.
Okechukwu, C. E. (2020). Does the Use of Mobile Phone Affect Male Fertility? A Mini-Review. Journal of Human Reproductive Sciences, 13(3), 174–183.
Yu, G., Bai, Z., Song, C., Cheng, Q., Wang, G., Tang, Z., & Yang, S. (2021). Current progress on the effect of mobile phone radiation on sperm quality: An updated systematic review and meta-analysis of human and animal studies. Environmental Pollution, 282, 116952.
Zhang, G., Yan, H., Chen, Q., Liu, K., Ling, X., Sun, L., Zhou, N., Wang, Z., Zou, P., Wang, X., Tan, L., Cui, Z., Zhou, Z., Liu, J., Ao, L., & Cao, J. (2016). Effects of cell phone use on semen parameters: Results from the MARHCS cohort study in Chongqing, China. Environment International, 91, 116–121.
DNA Damage
Diem, E., Schwarz, C., Adlkofer, F., Jahn, O., & Rüdiger, H. (2005). Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutation Research, 583(2), 178–183.
Lai, H. (2021). Genetic effects of non-ionizing electromagnetic fields. Electromagnetic Biology and Medicine, 40(2), 264–273.
Lai, H., & Singh, N. P. (1995). Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics, 16(3), 207–210.
Lai, H., & Singh, N. P. (1996). Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. International Journal of Radiation Biology, 69(4), 513–521.
López-Díaz, B., Mercado-Sáenz, S., Burgos-Molina, A. M., González-Vidal, A., Sendra-Portero, F., & Ruiz-Gómez, M. J. (2022). Genomic DNA damage induced by co-exposure to DNA damaging agents and pulsed magnetic field. International Journal of Radiation Biology, 1–13.
Megha, K., Deshmukh, P. S., Banerjee, B. D., Tripathi, A. K., Ahmed, R., & Abegaonkar, M. P. (2015). Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology, 51, 158–165.
Panagopoulos, D. J., Karabarbounis, A., Yakymenko, I., & Chrousos, G. P. (2021). Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review). International Journal of Oncology, 59(5), 1–16.
Phillips, J. L., Singh, N. P., & Lai, H. (2009). Electromagnetic fields and DNA damage. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 16(2–3), 79–88.
Ruediger, H. W. (2009). Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 16(2–3), 89–102.
Smith-Roe, S. L., Wyde, M. E., Stout, M. D., Winters, J. W., Hobbs, C. A., Shepard, K. G., Green, A. S., Kissling, G. E., Shockley, K. R., Tice, R. R., Bucher, J. R., & Witt, K. L. (2020). Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure. Environmental and Molecular Mutagenesis, 61(2), 276–290.
Cancer and Wireless Radio Frequency
Choi, Y.-J., Moskowitz, J. M., Myung, S.-K., Lee, Y.-R., & Hong, Y.-C. (2020). Cellular Phone Use and Risk of Tumors: Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 17(21), 8079.
Coureau, G., Bouvier, G., Lebailly, P., Fabbro-Peray, P., Gruber, A., Leffondre, K., Guillamo, J.-S., Loiseau, H., Mathoulin-Pélissier, S., Salamon, R., & Baldi, I. (2014). Mobile phone use and brain tumours in the CERENAT case-control study. Occupational and Environmental Medicine, 71(7), 514–522.
Davis DL., Pilarcik, AM., Miller, AB. (2020) Increased Generational Risk of Colon and Rectal Cancer in Recent Birth Cohorts under Age 40 – the Hypothetical Role of Radiofrequency Radiation from Cell Phones. Ann Gastroenterol Dig Dis, 3(1): 09-16. https://www.somatopublications.com/increased-generational-risk-of-colon-and-rectal-cancer-in-recent-birth-cohorts-under-age-40-the-hypothetical-role-of-radiofrequency-radiation-from-cell-phones.pdf
Directorate-General for Parliamentary Research Services (European Parliament), & Belpoggi, F. (2021). Health impact of 5G: Current state of knowledge of 5G related carcinogenic and reproductive/developmental hazards as they emerge from epidemiological studies and in vivo experimental studies. Publications Office of the European Union.
Falcioni, L., Bua, L., Tibaldi, E., Lauriola, M., De Angelis, L., Gnudi, F., Mandrioli, D., Manservigi, M., Manservisi, F., Manzoli, I., Menghetti, I., Montella, R., Panzacchi, S., Sgargi, D., Strollo, V., Vornoli, A., & Belpoggi, F. (2018). Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission. Environmental Research, 165, 496–503.
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2013). Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 102(Pt 2), 1–460.
Luo, J., Li, H., Deziel, N. C., Huang, H., Zhao, N., Ma, S., Ni, X., Udelsman, R., & Zhang, Y. (2020). Genetic susceptibility may modify the association between cell phone use and thyroid cancer: A population-based case-control study in Connecticut. Environmental Research, 182, 109013.
Markov, à E., Malmgren, L. O. G., & Belyaev, I. Y. (2010). Microwaves from Mobile Phones Inhibit 53BP1 Focus Formation in Human Stem Cells More Strongly Than in Differentiated Cells:
Pareja-Peña, F., Burgos-Molina, A. M., Sendra-Portero, F., & Ruiz-Gómez, M. J. (2022). Evidences of the (400 MHz – 3 GHz) radiofrequency electromagnetic field influence on brain tumor induction. International Journal of Environmental Health Research, 32(1), 121–130.
Markov, à E., Malmgren, L. O. G., & Belyaev, I. Y. (2010). Microwaves from Mobile Phones Inhibit 53BP1 Focus Formation in Human Stem Cells More Strongly Than in Differentiated Cells: Possible Mechanistic Link to Cancer Risk. Environmental Health Perspectives, 118(3), 394–399.
Prasad, M., Kathuria, P., Nair, P., Kumar, A., & Prasad, K. (2017). Mobile phone use and risk of brain tumours: A systematic review of association between study quality, source of funding, and research outcomes. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 38(5), 797–810.
Melnick, R. L. (2019). Commentary on the utility of the National Toxicology Program study on cell phone radiofrequency radiation data for assessing human health risks despite unfounded criticisms aimed at minimizing the findings of adverse health effects. Environmental Research, 168, 1–6.
Miller, A. B., Morgan, L. L., Udasin, I., & Davis, D. L. (2018). Cancer epidemiology update, following the 2011 IARC evaluation of radiofrequency electromagnetic fields (Monograph 102). Environmental Research, 167, 673–683.
Shih, Y.-W., Hung, C.-S., Huang, C.-C., Chou, K.-R., Niu, S.-F., Chan, S., & Tsai, H.-T. (2020). The Association Between Smartphone Use and Breast Cancer Risk Among Taiwanese Women: A Case-Control Study. Cancer Management and Research, 12, 10799–10807.
Vienne-Jumeau, A., Tafani, C., & Ricard, D. (2019). Environmental risk factors of primary brain tumors: A review. Revue Neurologique, 175(10), 664–678.
West, J. G., Kapoor, N. S., Liao, S.-Y., Chen, J. W., Bailey, L., & Nagourney, R. A. (2013). Multifocal Breast Cancer in Young Women with Prolonged Contact between Their Breasts and Their Cellular Phones. Case Reports in Medicine, 2013, e354682.
Yang, M., Guo, W., Yang, C., Tang, J., Huang, Q., Feng, S., Jiang, A., Xu, X., & Jiang, G. (2017). Mobile phone use and glioma risk: A systematic review and meta-analysis. PLOS ONE, 12(5), e0175136.
Cancer and Powerline Magnetic Extremely Low Frequency Fields
Brabant, C., Geerinck, A., Beaudart, C., Tirelli, E., Geuzaine, C., & Bruyère, O. (2022). Exposure to magnetic fields and childhood leukemia: A systematic review and meta-analysis of case-control and cohort studies. Reviews on Environmental Health.
Carles, C., Esquirol, Y., Turuban, M., Piel, C., Migault, L., Pouchieu, C., Bouvier, G., Fabbro-Peray, P., Lebailly, P., & Baldi, I. (2020). Residential proximity to power lines and risk of brain tumor in the general population. Environmental Research, 185, 109473.
Carpenter, D. O. (2013). Human disease resulting from exposure to electromagnetic fields. Reviews on Environmental Health, 28(4), 159–172.
Carpenter, D. O. (2019). Extremely low frequency electromagnetic fields and cancer: How source of funding affects results. Environmental Research, 178, 108688.
Erdem, O., Akay, C., Cevher, S. C., Canseven, A. G., Aydın, A., & Seyhan, N. (2018). Effects of Intermittent and Continuous Magnetic Fields on Trace Element Levels in Guinea Pigs. Biological Trace Element Research, 181(2), 265–271.
IARC. (n.d.). Non-ionizing Radiation, Part 1: Static and Extremely Low-frequency (ELF) Electric and Magnetic Fields. Retrieved September 21, 2022, from https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Non-ionizing-Radiation-Part-1-Static-And-Extremely-Low-frequency-ELF-Electric-And-Magnetic-Fields-2002
Karimi, A., Ghadiri Moghaddam, F., & Valipour, M. (2020). Insights in the biology of extremely low-frequency magnetic fields exposure on human health. Molecular Biology Reports, 47(7), 5621–5633.
Khan, M. W., Juutilainen, J., Naarala, J., & Roivainen, P. (2022). Residential extremely low frequency magnetic fields and skin cancer. Occupational and Environmental Medicine, 79(1), 49–54.
Koeman, T., van den Brandt, P. A., Slottje, P., Schouten, L. J., Goldbohm, R. A., Kromhout, H., & Vermeulen, R. (2014). Occupational extremely low-frequency magnetic field exposure and selected cancer outcomes in a prospective Dutch cohort. Cancer Causes & Control: CCC, 25(2), 203–214.
Seomun, G., Lee, J., & Park, J. (2021). Exposure to extremely low-frequency magnetic fields and childhood cancer: A systematic review and meta-analysis. PLOS ONE, 16(5), e0251628.
Tumor Promotion and Synergistic Effects
Ansarihadipour, H., & Bayatiani, M. (2016). Influence of Electromagnetic Fields on Lead Toxicity: A Study of Conformational Changes in Human Blood Proteins. Iranian Red Crescent Medical Journal, 18(7), e28050.
Baohong, W., Jiliang, H., Lifen, J., Deqiang, L., Wei, Z., Jianlin, L., & Hongping, D. (2005). Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro. Mutation Research, 578(1–2), 149–157.
Byun, Y.-H., Ha, M., Kwon, H.-J., Hong, Y.-C., Leem, J.-H., Sakong, J., Kim, S. Y., Lee, C. G., Kang, D., Choi, H.-D., & Kim, N. (2013). Mobile Phone Use, Blood Lead Levels, and Attention Deficit Hyperactivity Symptoms in Children: A Longitudinal Study. PLOS ONE, 8(3), e59742.
Cao, Y., Zhang, W., Lu, M.-X., Xu, Q., Meng, Q.-Q., Nie, J.-H., & Tong, J. (2009). 900-MHz microwave radiation enhances gamma-ray adverse effects on SHG44 cells. Journal of Toxicology and Environmental Health. Part A, 72(11–12), 727–732.
Choi, K.-H., Ha, M., Ha, E.-H., Park, H., Kim, Y., Hong, Y.-C., Lee, A.-K., Hwa Kwon, J., Choi, H.-D., Kim, N., Kim, S., & Park, C. (2017). Neurodevelopment for the first three years following prenatal mobile phone use, radio frequency radiation and lead exposure. Environmental Research, 156, 810–817.
Kostoff, R.N. and Clifford G.Y. Lau. 2017. “Modified health effects of non-ionizing electromagnetic radiation combined with other agents reported in the biomedical literature.” Microwave Effects on DNA and Proteins (2017): 97-158.
Lerchl, A., Klose, M., Grote, K., Wilhelm, A. F. X., Spathmann, O., Fiedler, T., Streckert, J., Hansen, V., & Clemens, M. (2015). Tumor promotion by exposure to radiofrequency electromagnetic fields below exposure limits for humans. Biochemical and Biophysical Research Communications, 459(4), 585–590.
Moretti, M., Villarini, M., Simonucci, S., Fatigoni, C., Scassellati-Sforzolini, G., Monarca, S., Pasquini, R., Angelucci, M., & Strappini, M. (2005). Effects of co-exposure to extremely low frequency (ELF) magnetic fields and benzene or benzene metabolites determined in vitro by the alkaline comet assay. Toxicology Letters, 157(2), 119–128.
Soffritti, M., & Giuliani, L. (2019). The carcinogenic potential of non-ionizing radiations: The cases of S-50 Hz MF and 1.8 GHz GSM radiofrequency radiation. Basic & Clinical Pharmacology & Toxicology, 125 Suppl 3, 58–69.
Soffritti, M., Tibaldi, E., Padovani, M., Hoel, D. G., Giuliani, L., Bua, L., Lauriola, M., Falcioni, L., Manservigi, M., Manservisi, F., & Belpoggi, F. (2016). Synergism between sinusoidal-50 Hz magnetic field and formaldehyde in triggering carcinogenic effects in male Sprague–Dawley rats. American Journal of Industrial Medicine, 59(7), 509–521.
Sueiro-Benavides, R. A., Leiro-Vidal, J. M., Salas-Sánchez, A. Á., Rodríguez-González, J. A., Ares-Pena, F. J., & López-Martín, M. E. (2021). Radiofrequency at 2.45 GHz increases toxicity, pro-inflammatory and pre-apoptotic activity caused by black carbon in the RAW 264.7 macrophage cell line. Science of The Total Environment, 765, 142681.
Szudziński, A., Pietraszek, A., Janiak, M., Wrembel, J., Kałczak, M., & Szmigielski, S. (1982). Acceleration of the development of benzopyrene-induced skin cancer in mice by microwave radiation. Archives of Dermatological Research, 274(3–4), 303–312.
Turner, M. C., Benke, G., Bowman, J. D., Figuerola, J., Fleming, S., Hours, M., Kincl, L., Krewski, D., McLean, D., Parent, M.-E., Richardson, L., Sadetzki, S., Schlaefer, K., Schlehofer, B., Schüz, J., Siemiatycki, J., van Tongeren, M., & Cardis, E. (2014). Occupational Exposure to Extremely Low-Frequency Magnetic Fields and Brain Tumor Risks in the INTEROCC Study. Cancer Epidemiology, Biomarkers & Prevention, 23(9), 1863–1872.
Vila, J., Turner, M. C., Gracia-Lavedan, E., Figuerola, J., Bowman, J. D., Kincl, L., Richardson, L., Benke, G., Hours, M., Krewski, D., McLean, D., Parent, M.-E., Sadetzki, S., Schlaefer, K., Schlehofer, B., Schüz, J., Siemiatycki, J., van Tongeren, M., Cardis, E., & INTEROCC Study Group. (2018). Occupational exposure to high-frequency electromagnetic fields and brain tumor risk in the INTEROCC study: An individualized assessment approach. Environment International, 119, 353–365.
Zhang, F., Xu, C.-L., & Liu, C.-M. (2015). Drug delivery strategies to enhance the permeability of the blood–brain barrier for treatment of glioma. Drug Design, Development and Therapy, 9, 2089–2100.
Headaches
Butt, M., Chavarria, Y., Ninmol, J., Arif, A., Tebha, S. S., Daniyal, M., Siddiqui, U. M., Shams, S. S., Sarfaraz, Q., Haider, S. F., & Essar, M. Y. (2022). Association of increased pain intensity, daytime sleepiness, poor sleep quality, and quality of life with mobile phone overuse in patients with migraine: A multicenter, cross-sectional comparative study. Brain and Behavior, e2760.
Chongchitpaisan, W., Wiwatanadate, P., Tanprawate, S., Narkpongphan, A., & Siripon, N. (2021). Trigger of a migraine headache among Thai adolescents smartphone users: A time series study. Environmental Analysis Health and Toxicology, 36(1).
Demir YP, Sumer MM. (2019). Effects of smartphone overuse on headache, sleep and quality of life in migraine patients. Neurosciences (Riyadh). Apr;24(2):115-121
Durusoy, R., Hassoy, H., Özkurt, A., & Karababa, A. O. (2017). Mobile phone use, school electromagnetic field levels and related symptoms: A cross-sectional survey among 2150 high school students in Izmir. Environmental Health: A Global Access Science Source, 16(1), 51.
Farashi, S., Bashirian, S., Khazaei, S., Khazaei, M., & Farhadinasab, A. (2022). Mobile phone electromagnetic radiation and the risk of headache: A systematic review and meta-analysis. International Archives of Occupational and Environmental Health, 95(7), 1587–1601.
Sudan, M., Kheifets, L., Arah, O., Olsen, J., & Zeltzer, L. (2012). Prenatal and Postnatal Cell Phone Exposures and Headaches in Children. The Open Pediatric Medicine Journal, 6(2012), 46–52.
Diabetes
Ismaiil, L. A., Joumaa, W. H., & Moustafa, M. E. (2019). The impact of exposure of diabetic rats to 900 MHz electromagnetic radiation emitted from mobile phone antenna on hepatic oxidative stress. Electromagnetic Biology and Medicine, 38(4), 287–296.
Masoumi, A., Karbalaei, N., Mortazavi, S. M. J., & Shabani, M. (2018). Radiofrequency radiation emitted from Wi-Fi (2.4 GHz) causes impaired insulin secretion and increased oxidative stress in rat pancreatic islets. International Journal of Radiation Biology, 94(9), 850–857.
Meo, S. A., Alsubaie, Y., Almubarak, Z., Almutawa, H., AlQasem, Y., & Hasanato, R. M. (2015). Association of Exposure to Radio-Frequency Electromagnetic Field Radiation (RF-EMFR) Generated by Mobile Phone Base Stations with Glycated Hemoglobin (HbA1c) and Risk of Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health, 12(11), 14519–14528.
Milham, S. (2014). Evidence that dirty electricity is causing the worldwide epidemics of obesity and diabetes. Electromagnetic Biology and Medicine, 33(1), 75–78.
Sert, C., Delin, M., Eren, M. A., & Çakmak, Y. (2022). Investigation of Fetuin-A pathway in diabetes mellitus formation in rats exposed to elf magnetic fields. Electromagnetic Biology and Medicine, 1–7.
Sibghatullah, H., Sangi, S. M. A., Ahmedani, E. I., Alqahtani, A., Bawadekji, A., & Nagaraja, S. (2021). Amelioration of Cell Phone and Wi Fi induced Pancreatic Damage and Hyperglycemia (Diabetes Mellitus) with Pomegranate and Vit E in Rats. Journal of Pharmaceutical Research International, 204–215.
Obesity and Food Ingestion
Bosquillon de Jenlis, A., Del Vecchio, F., Delanaud, S., Bach, V., & Pelletier, A. (2020). Effects of co-exposure to 900 MHz radiofrequency electromagnetic fields and high-level noise on sleep, weight, and food intake parameters in juvenile rats. Environmental Pollution, 256, 113461.
Li, D.-K., Ferber, J. R., Odouli, R., & Quesenberry, C. P. (2012). A Prospective Study of In-utero Exposure to Magnetic Fields and the Risk of Childhood Obesity. Scientific Reports, 2(1), 540.
Tripathi, R., Banerjee, S. K., Nirala, J. P., & Mathur, R. (2022). Simultaneous exposure to electromagnetic field from mobile phone and unimpeded fructose drinking during pre-, peri-, and post-pubertal stages perturbs the hypothalamic and hepatic regulation of energy homeostasis by early adulthood: Experimental evidence. Environmental Science and Pollution Research, 29(5), 7438–7451.
Wardzinski, E. K., Jauch-Chara, K., Haars, S., Melchert, U. H., Scholand-Engler, H. G., & Oltmanns, K. M. (2022). Mobile Phone Radiation Deflects Brain Energy Homeostasis and Prompts Human Food Ingestion. Nutrients, 14(2), 339.
Oxidative Stress
Georgiou, C. D., & Margaritis, L. H. (2021). Oxidative Stress and NADPH Oxidase: Connecting Electromagnetic Fields, Cation Channels and Biological Effects. International Journal of Molecular Sciences, 22(18), 10041.
Kamali, K., Taravati, A., Sayyadi, S., Gharib, F. Z., & Maftoon, H. (2018). Evidence of oxidative stress after continuous exposure to Wi-Fi radiation in rat model. Environmental Science and Pollution Research International, 25(35), 35396–35403.
Manta, A. K., Stravopodis, D. J., Papassideri, I. S., & Margaritis, L. H. (2014). Reactive oxygen species elevation and recovery in Drosophila bodies and ovaries following short-term and long-term exposure to DECT base EMF. Electromagnetic Biology and Medicine, 33(2), 118–131.
Pagadala et al. (2022). Effect of RFEMR on NSE and MDA levels in Sprague Dawley rats. Bioinformation 18(6), 501-505.
Schuermann, D., & Mevissen, M. (2021). Manmade Electromagnetic Fields and Oxidative Stress—Biological Effects and Consequences for Health. International Journal of Molecular Sciences, 22(7), 3772.
Singh, K. V., Gautam, R., Meena, R., Nirala, J. P., Jha, S. K., & Rajamani, P. (2020). Effect of mobile phone radiation on oxidative stress, inflammatory response, and contextual fear memory in Wistar rat. Environmental Science and Pollution Research International, 27(16), 19340–19351.
Yakymenko, I., Tsybulin, O., Sidorik, E., Henshel, D., Kyrylenko, O., & Kyrylenko, S. (2016). Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagnetic Biology and Medicine, 35(2), 186–202.
Prenatal Exposures
Alchalabi, A. S. H., Aklilu, E., Aziz, A. R., Malek, F., Ronald, S. H., & Khan, M. A. (2016). Different periods of intrauterine exposure to electromagnetic field: Influence on female rats’ fertility, prenatal and postnatal development. Asian Pacific Journal of Reproduction, 5(1), 14–23.
Aldad, T. S., Gan, G., Gao, X.-B., & Taylor, H. S. (2012). Fetal Radiofrequency Radiation Exposure From 800-1900 Mhz-Rated Cellular Telephones Affects Neurodevelopment and Behavior in Mice. Scientific Reports, 2(1), 312.
Bektas, H., Bektas, M. S., & Dasdag, S. (2018). Effects of mobile phone exposure on biochemical parameters of cord blood: A preliminary study. Electromagnetic Biology and Medicine, 37(4), 184–191.
Bektas, H., Bektas, M. S., & Dasdag, S. (2022). Effect of mobile phone usage duration during pregnancy on the general motor movements of infants. Biotechnology & Biotechnological Equipment, 36(1), 56–66.
Boileau, N., Margueritte, F., Gauthier, T., Boukeffa, N., Preux, P.-M., Labrunie, A., & Aubard, Y. (2020). Mobile phone use during pregnancy: Which association with fetal growth? Journal of Gynecology Obstetrics and Human Reproduction, 49(8), 101852.
Cabot, E., Christ, A., Bühlmann, B., Zefferer, M., Chavannes, N., Bakker, J. F., van Rhoon, G. C., & Kuster, N. (2014). Quantification Of RF-exposure of the Fetus Using Anatomical CAD-Models in Three Different Gestational Stages. Health Physics, 107(5), 369–381.
Holovská, K., Almášiová, V., Andrašková, S., Demčišáková, Z., Račeková, E., & Cigánková, V. (2021). Effect of electromagnetic radiation on the liver structure and ultrastructure of in utero irradiated rats. Acta Veterinaria Brno, 90(3), 315–319.
Jarrah, I. E., & Rababa, M. (2022). Impacts of smartphone radiation on pregnancy: A systematic review. Heliyon, 8(2).
Li, D.-K., Chen, H., Ferber, J. R., Hirst, A. K., & Odouli, R. (2020). Association Between Maternal Exposure to Magnetic Field Nonionizing Radiation During Pregnancy and Risk of Attention-Deficit/Hyperactivity Disorder in Offspring in a Longitudinal Birth Cohort. JAMA Network Open, 3(3), e201417.
Li, D.-K., Chen, H., & Odouli, R. (2011). Maternal Exposure to Magnetic Fields During Pregnancy in Relation to the Risk of Asthma in Offspring. Archives of Pediatrics & Adolescent Medicine, 165(10), 945–950.
Lu, X., Oda, M., Ohba, T., Mitsubuchi, H., Masuda, S., & Katoh, T. (2017). Association of excessive mobile phone use during pregnancy with birth weight: An adjunct study in Kumamoto of Japan Environment and Children’s Study. Environmental Health and Preventive Medicine, 22(1), 52.
Stasinopoulou, M., Fragopoulou, A. F., Stamatakis, A., Mantziaras, G., Skouroliakou, K., Papassideri, I. S., Stylianopoulou, F., Lai, H., Kostomitsopoulos, N., & Margaritis, L. H. (2016). Effects of pre- and postnatal exposure to 1880-1900MHz DECT base radiation on development in the rat. Reproductive Toxicology (Elmsford, N.Y.), 65, 248–262.
Tomruk, A., Ozgur-Buyukatalay, E., Ozturk, G. G., & Ulusu, N. N. (2022). Short-term exposure to radiofrequency radiation and metabolic enzymes’ activities during pregnancy and prenatal development. Electromagnetic Biology and Medicine, 0(0), 1–9.
Zarei, S., Mortazavi, S. M. J., Mehdizadeh, A. R., Jalalipour, M., Borzou, S., Taeb, S., Haghani, M., Mortazavi, S. A. R., Shojaei-fard, M. B., Nematollahi, S., Alighanbari, N., & Jarideh, S. (2015). A Challenging Issue in the Etiology of Speech Problems: The Effect of Maternal Exposure to Electromagnetic Fields on Speech Problems in the Offspring. Journal of Biomedical Physics & Engineering, 5(3), 151–154.
Zhang, Y., Li, Z., Gao, Y., & Zhang, C. (2015). Effects of fetal microwave radiation exposure on offspring behavior in mice. Journal of Radiation Research, 56(2), 261–268.
Zhao, D., Guo, L., Zhang, R., Zhu, Q., Wang, H., Liu, R., Yan, H., & Dang, S. (2021). Risk of congenital heart disease due to exposure to common electrical appliances during early pregnancy: A case-control study. Environmental Science and Pollution Research, 28(4), 4739–4748.
Miscarriage
Ghazanfarpour, M., Kashani, Z. A., Pakzad, R., Abdi, F., Rahnemaei, F. A., Akbari, P. A., & Roozbeh, N. (2021). Effect of electromagnetic field on abortion: A systematic review and meta-analysis. Open Medicine (Warsaw, Poland), 16(1), 1628–1641.
Li, D.-K., Chen, H., Ferber, J. R., Odouli, R., & Quesenberry, C. (2017). Exposure to Magnetic Field Non-Ionizing Radiation and the Risk of Miscarriage: A Prospective Cohort Study. Scientific Reports, 7(1), 17541.
Li, D.-K., Odouli, R., Wi, S., Janevic, T., Golditch, I., Bracken, T. D., Senior, R., Rankin, R., & Iriye, R. (2002). A population-based prospective cohort study of personal exposure to magnetic fields during pregnancy and the risk of miscarriage. Epidemiology (Cambridge, Mass.), 13(1), 9–20.
Mahmoudabadi, F. S., Ziaei, S., Firoozabadi, M., & Kazemnejad, A. (2015). Use of mobile phone during pregnancy and the risk of spontaneous abortion. Journal of Environmental Health Science and Engineering, 13(1), 34.
Wang, Q., Cao, Z., Qu, Y., Peng, X., Guo, S., & Chen, L. (2013). Residential exposure to 50 Hz magnetic fields and the association with miscarriage risk: A 2-year prospective cohort study. PloS One, 8(12), e82113.
Brain
Bertagna, F., Lewis, R., Silva, S. R. P., McFadden, J., & Jeevaratnam, K. (2021). Effects of electromagnetic fields on neuronal ion channels: A systematic review. Annals of the New York Academy of Sciences, 1499(1), 82–103.
Cabré-Riera, A., Marroun, H. E., Muetzel, R., van Wel, L., Liorni, I., Thielens, A., Birks, L. E., Pierotti, L., Huss, A., Joseph, W., Wiart, J., Capstick, M., Hillegers, M., Vermeulen, R., Cardis, E., Vrijheid, M., White, T., Röösli, M., Tiemeier, H., & Guxens, M. (2020). Estimated whole-brain and lobe-specific radiofrequency electromagnetic fields doses and brain volumes in preadolescents. Environment International, 142, 105808.
Cabré-Riera, A., van Wel, L., Liorni, I., Koopman-Verhoeff, M. E., Imaz, L., Ibarluzea, J., Huss, A., Wiart, J., Vermeulen, R., Joseph, W., Capstick, M., Vrijheid, M., Cardis, E., Röösli, M., Eeftens, M., Thielens, A., Tiemeier, H., & Guxens, M. (2022). Estimated all-day and evening whole-brain radiofrequency electromagnetic fields doses, and sleep in preadolescents. Environmental Research, 204(Pt C), 112291.
Echchgadda, I., Cantu, J. C., Tolstykh, G. P., Butterworth, J. W., Payne, J. A., & Ibey, B. L. (2022). Changes in the excitability of primary hippocampal neurons following exposure to 3.0 GHz radiofrequency electromagnetic fields. Scientific Reports, 12(1), 3506.
Fragopoulou, A. F., Samara, A., Antonelou, M. H., Xanthopoulou, A., Papadopoulou, A., Vougas, K., Koutsogiannopoulou, E., Anastasiadou, E., Stravopodis, D. J., Tsangaris, G. T., & Margaritis, L. H. (2012). Brain proteome response following whole body exposure of mice to mobile phone or wireless DECT base radiation. Electromagnetic Biology and Medicine, 31(4), 250–274.
Hu, C., Zuo, H., & Li, Y. (2021). Effects of Radiofrequency Electromagnetic Radiation on Neurotransmitters in the Brain. Frontiers in Public Health, 9.
Li, Y., Deng, P., Chen, C., Ma, Q., Pi, H., He, M., Lu, Y., Gao, P., Zhou, C., He, Z., Zhang, Y., Yu, Z., & Zhang, L. (2021). 1,800 MHz Radiofrequency Electromagnetic Irradiation Impairs Neurite Outgrowth With a Decrease in Rap1-GTP in Primary Mouse Hippocampal Neurons and Neuro2a Cells. Frontiers in Public Health, 9, 771508.
Mumtaz, S., Rana, J. N., Choi, E. H., & Han, I. (2022). Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. International Journal of Molecular Sciences, 23(16), 9288.
Nittby, H., Brun, A., Eberhardt, J., Malmgren, L., Persson, B. R. R., & Salford, L. G. (2009). Increased blood–brain barrier permeability in mammalian brain 7 days after exposure
Pall, M. L. (n.d.). Low Intensity Electromagnetic Fields Act via Voltage-Gated Calcium Channel (VGCC) Activation to Cause Very Early Onset Alzheimer’s Disease: 18 Distinct Types of Evidence. Current Alzheimer Research, 19(2), 119–132.
Pall, M. L. (2016). Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. Journal of Chemical Neuroanatomy, 75, 43–51.
Sharma, A., Shrivastava, S., & Shukla, S. (2020). Exposure of Radiofrequency Electromagnetic Radiation on Biochemical and Pathological Alterations. Neurology India, 68(5), 1092–1100.
Sırav, B., & Seyhan, N. (2016). Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats. Journal of Chemical Neuroanatomy, 75(Pt B), 123–127.
Sonmez, O. F., Odaci, E., Bas, O., & Kaplan, S. (2010). Purkinje cell number decreases in the adult female rat cerebellum following exposure to 900MHz electromagnetic field. Brain Research, 1356, 95–101.
Tang, J., Zhang, Y., Yang, L., Chen, Q., Tan, L., Zuo, S., Feng, H., Chen, Z., & Zhu, G. (2015). Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Research, 1601, 92–101.
Volkow, N. D., Tomasi, D., Wang, G.-J., Vaska, P., Fowler, J. S., Telang, F., Alexoff, D., Logan, J., & Wong, C. (2011). Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism. JAMA, 305(8), 808–813.
Memory and Cognition
Cabré-Riera, A., van Wel, L., Liorni, I., Thielens, A., Birks, L. E., Pierotti, L., Joseph, W., González-Safont, L., Ibarluzea, J., Ferrero, A., Huss, A., Wiart, J., Santa-Marina, L., Torrent, M., Vrijkotte, T., Capstick, M., Vermeulen, R., Vrijheid, M., Cardis, E., … Guxens, M. (2021). Association between estimated whole-brain radiofrequency electromagnetic fields dose and cognitive function in preadolescents and adolescents. International Journal of Hygiene and Environmental Health, 231, 113659.
Foerster, M., Thielens, A., Joseph, W., Eeftens, M., & R, öösli M. (n.d.). A Prospective Cohort Study of Adolescents’ Memory Performance and Individual Brain Dose of Microwave Radiation from Wireless Communication. Environmental Health Perspectives, 126(7), 077007.
Fragopoulou, A. F., Miltiadous, P., Stamatakis, A., Stylianopoulou, F., Koussoulakos, S. L., & Margaritis, L. H. (2010). Whole body exposure with GSM 900MHz affects spatial memory in mice. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 17(3), 179–187.
Maaroufi, K., Had-Aissouni, L., Melon, C., Sakly, M., Abdelmelek, H., Poucet, B., & Save, E. (2014). Spatial learning, monoamines and oxidative stress in rats exposed to 900 MHz electromagnetic field in combination with iron overload. Behavioural Brain Research, 258, 80–89.
Ntzouni, M. P., Skouroliakou, A., Kostomitsopoulos, N., & Margaritis, L. H. (2013). Transient and cumulative memory impairments induced by GSM 1.8 GHz cell phone signal in a mouse model. Electromagnetic Biology and Medicine, 32(1), 95–120.
Ntzouni, M. P., Stamatakis, A., Stylianopoulou, F., & Margaritis, L. H. (2011). Short-term memory in mice is affected by mobile phone radiation. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 18(3), 193–199.
Tan, S., Wang, H., Xu, X., Zhao, L., Zhang, J., Dong, J., Yao, B., Wang, H., Hao, Y., Zhou, H., Gao, Y., & Peng, R. (2021). Acute effects of 2.856 GHz and 1.5 GHz microwaves on spatial memory abilities and CREB-related pathways. Scientific Reports, 11(1), 12348.
Behavioral and Emotional
Bagheri Hosseinabadi, M., Khanjani, N., Ebrahimi, M. H., Haji, B., & Abdolahfard, M. (2019). The effect of chronic exposure to extremely low-frequency electromagnetic fields on sleep quality, stress, depression and anxiety. Electromagnetic Biology and Medicine, 38(1), 96–101.
Byun, Y.-H., Ha, M., Kwon, H.-J., Hong, Y.-C., Leem, J.-H., Sakong, J., Kim, S. Y., Lee, C. G., Kang, D., Choi, H.-D., & Kim, N. (2013). Mobile Phone Use, Blood Lead Levels, and Attention Deficit Hyperactivity Symptoms in Children: A Longitudinal Study. PLOS ONE, 8(3), e59742.
Divan, H. A., Kheifets, L., Obel, C., & Olsen, J. (2012). Cell phone use and behavioural problems in young children. J Epidemiol Community Health, 66(6), 524–529.
Hosseini, E., Habibi, M. F., Babri, S., Mohaddes, G., Abkhezr, H., & Heydari, H. (2022). Maternal stress induced anxiety-like behavior exacerbated by electromagnetic fields radiation in female rats offspring. PLOS ONE, 17(8), e0273206.
Luo X, Huang X, Luo Z, Wang Z, He G, Tan Y, Zhang B, Zhou H, Li P, Shen T, Yu X, Yang X (2021): Electromagnetic field exposure-induced depression features could be alleviated by heat acclimation based on remodeling the gut microbiota. Ecotoxicol Environ Saf. 2021 Nov 15;228:112980.
Sudan, M., Birks, L. E., Aurrekoetxea, J. J., Ferrero, A., Gallastegi, M., Guxens, M., Ha, M., Lim, H., Olsen, J., González-Safont, L., Vrijheid, M., & Kheifets, L. (2018). Maternal cell phone use during pregnancy and child cognition at age 5 years in 3 birth cohorts. Environment International, 120, 155–162.
Sudan, M., Olsen, J., Arah, O. A., Obel, C., & Kheifets, L. (2016). Prospective cohort analysis of cellphone use and emotional and behavioural difficulties in children. J Epidemiol Community Health, 70(12), 1207–1213.
Endocrine System
Alkayyali, T., Ochuba, O., Srivastava, K., Sandhu, J. K., Joseph, C., Ruo, S. W., Jain, A., Waqar, A., & Poudel, S. (2021). An Exploration of the Effects of Radiofrequency Radiation Emitted by Mobile Phones and Extremely Low Frequency Radiation on Thyroid Hormones and Thyroid Gland Histopathology. Cureus, 13(8).
Cantürk Tan, F., Yalçin, B., Yay, A. H., Tan, B., Yeğin, K., & Daşdağ, S. (2022). Effects of pre and postnatal 2450 MHz continuous wave (CW) radiofrequency radiation on thymus: Four generation exposure. Electromagnetic Biology and Medicine, 41(3), 315–324.
Kitaoka, K., Kitamura, M., Aoi, S., Shimizu, N., & Yoshizaki, K. (2013). Chronic exposure to an extremely low-frequency magnetic field induces depression-like behavior and corticosterone secretion without enhancement of the hypothalamic–pituitary–adrenal axis in mice. Bioelectromagnetics, 34(1), 43–51.
Perov, S., Rubtsova, N., & Balzano, Q. (2019). Effects of 171 MHz Low-Intensity Electromagnetic Field on Glucocorticoid and Mineral Corticoid Activity of the Adrenal Glands of Rats. Bioelectromagnetics, 40(8), 578–587.
Sangün, Ö., Dündar, B., Çömlekçi, S., & Büyükgebiz, A. (2015). The Effects of Electromagnetic Field on the Endocrine System in Children and Adolescents. Pediatric Endocrinology Reviews: PER, 13(2), 531–545.
Siqueira, E. C., de Souza, F. T. A., Ferreira, E., Souza, R. P., Macedo, S. C., Friedman, E., Gomez, M. V., Gomes, C. C., & Gomez, R. S. (2016). Cell phone use is associated with an inflammatory cytokine profile of parotid gland saliva. Journal of Oral Pathology & Medicine, 45(9), 682–686.
Uluaydin, N. K., Cerezci, O., & Seker, S. S. (2020). Can Mobile Phone Usage Affect Hypothalamus-Pituitary-Adrenal Axis Response? 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), 0780–0783.
Immune System
Mahaki, H., Tanzadehpanah, H., Jabarivasal, N., Sardanian, K., & Zamani, A. (2019). A review on the effects of extremely low frequency electromagnetic field (ELF-EMF) on cytokines of innate and adaptive immunity. Electromagnetic Biology and Medicine, 38(1), 84–95.
Zhao, L., Yao, C., Wang, H., Dong, J., Zhang, J., Xu, X., Wang, H., Yao, B., Ren, K., Sun, L., & Peng, R. (2022). Immune Responses to Multi-Frequencies of 1.5 GHz and 4.3 GHz Microwave Exposure in Rats: Transcriptomic and Proteomic Analysis. International Journal of Molecular Sciences, 23(13), 6949.
Bacteria and Antibiotic Resistance
I H., S.-S., F A., J., H H., Y., & M E., M. (2019). Evaluation of Wi-Fi Radiation Effects on Antibiotic Susceptibility, Metabolic Activity and Biofilm Formation by Escherichia Coli 0157H7, Staphylococcus Aureus and Staphylococcus Epidermis. Journal of Biomedical Physics & Engineering, 9(5), 579–586.
Mortazavi, S. M. J., Taheri, M., Paknahad, M., & Khandadash, S. (2022). Effects of Radiofrequency Electromagnetic Fields Emitted from Mobile Phones and Wi-Fi Router on the Growth Rate and Susceptibility of Enterococcus faecalis to Antibiotics. Journal of Biomedical Physics & Engineering, 12(4), 387–394.
Movahedi, M. M., Nouri, F., Tavakoli Golpaygani, A., Ataee, L., Amani, S., & Taheri, M. (2019). Antibacterial Susceptibility Pattern of the Pseudomonas aeruginosa and Staphylococcus aureus after Exposure to Electromagnetic Waves Emitted from Mobile Phone Simulator. Journal of Biomedical Physics & Engineering, 9(6), 637–646.
Nakouti, I., Hobbs, G., Teethaisong, Y., & Phipps, D. (2017). A demonstration of athermal effects of continuous microwave irradiation on the growth and antibiotic sensitivity of Pseudomonas aeruginosa PAO1. Biotechnology Progress, 33(1), 37–44.
Pegios, A., Kavvadas, D., Ζarras, K., Mpani, K., Soukiouroglou, P., Charalampidou, S., Vagdatli, E., & Papamitsou, T. (2022). The Effect of Electromagnetic Radiation Transmitted from Routers on Antibiotic Susceptibility of Bacterial Pathogens. Journal of Biomedical Physics & Engineering, 12(4), 327–338.
Taheri, M., Mortazavi, S. M. J., Moradi, M., Mansouri, S., Hatam, G. R., & Nouri, F. (2017). Evaluation of the Effect of Radiofrequency Radiation Emitted From Wi-Fi Router and Mobile Phone Simulator on the Antibacterial Susceptibility of Pathogenic Bacteria Listeria monocytogenes and Escherichia coli. Dose-Response: A Publication of International Hormesis Society, 15(1), 1559325816688527.
Torgomyan, H., & Trchounian, A. (2012). Escherichia coli membrane-associated energy-dependent processes and sensitivity toward antibiotics changes as responses to low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies. Cell Biochemistry and Biophysics, 62(3), 451–461.
Flora and Fauna
- Lázaro, A. Chroni, T. Tscheulin, J. Devalez, C. Matsoukas, & T. Petanidou. (2016). Electromagnetic radiation of mobile telecommunication antennas affects the abundance and composition of wild pollinators. Journal of Insect Conservation, 20(2), 315–324. https://doi.org/10.1007/s10841-016-9868-8
Adelaja, O. J., Ande, A. T., Abdulraheem, G. D., Oluwakorode, I. A., Oladipo, O. A., & Oluwajobi, A. O. (2021). Distribution, diversity and abundance of some insects around a telecommunication mast in Ilorin, Kwara State, Nigeria. Bulletin of the National Research Centre, 45(1), 222.
Balmori, A. (2015). Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. Science of The Total Environment, 518–519, 58–60.
Balmori A. (2014). Electrosmog and species conservation. Science of The Total Environment, 496:314-316
Balmori A. (2022). Corneal opacity in Northern Bald Ibises (Geronticus eremita) equipped with radio transmitters. Electromagnetic Biol Med.174-176.
Balmori A. (2021) Electromagnetic radiation as an emerging driver factor for the decline of insects. Science of the Total Environment. 767: 144913
Borre, E. D., Joseph, W., Aminzadeh, R., Müller, P., Boone, M. N., Josipovic, I., Hashemizadeh, S., Kuster, N., Kühn, S., & Thielens, A. (2021). Radio-frequency exposure of the yellow fever mosquito (A. aegypti) from 2 to 240 GHz. PLOS Computational Biology, 17(10), e1009460.
Cucurachi, S., Tamis, W. L. M., Vijver, M. G., Peijnenburg, W. J. G. M., Bolte, J. F. B., & de Snoo, G. R. (2013). A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environment International, 51, 116–140.
Favre, D. (2011). Mobile phone-induced honeybee worker piping. Apidologie, 42(3), 270–279.
Fedele, G., Edwards, M. D., Bhutani, S., Hares, J. M., Murbach, M., Green, E. W., Dissel, S., Hastings, M. H., Rosato, E., & Kyriacou, C. P. (2014). Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genetics, 10(12), e1004804.
Fernie, K. J., & Reynolds, S. J. (2005). The effects of electromagnetic fields from power lines on avian reproductive biology and physiology: A review. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 8(2), 127–140.
Halgamuge, M. N. (2017). Review: Weak radiofrequency radiation exposure from mobile phone radiation on plants. Electromagnetic Biology and Medicine, 36(2), 213–235.
Haggerty, K. (2010). Adverse Influence of Radio Frequency Background on Trembling Aspen Seedlings: Preliminary Observations. International Journal of Forestry Research, 2010, 836278.
Hutchison, Z. L., Gill, A. B., Sigray, P., He, H., & King, J. W. (2020). Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom-dwelling marine species. Scientific Reports, 10(1), 4219.
Kaur, S., Vian, A., Chandel, S., Singh, D. H., Batish, D., & Kohli, R. (2021). Sensitivity of plants to high frequency electromagnetic radiation: Cellular mechanisms and morphological changes. Reviews in Environmental Science and Bio/Technology, 20.
Lee, K.-S., Choi, J.-S., Hong, S.-Y., Son, T.-H., & Yu, K. (2008). Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila. Bioelectromagnetics, 29(5), 371–379.
Levitt, B. B., Lai, H. C., & Manville, A. M. (2021). Effects of non-ionizing electromagnetic fields on flora and fauna, Part 3. Exposure standards, public policy, laws, and future directions. Reviews on Environmental Health.
Levitt, B. B., Lai, H. C., & Manville, A. M. (2022a). Effects of non-ionizing electromagnetic fields on flora and fauna, part 1. Rising ambient EMF levels in the environment. Reviews on Environmental Health, 37(1), 81–122.
Levitt, B. B., Lai, H. C., & Manville, A. M. (2022b). Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: How species interact with natural and man-made EMF. Reviews on Environmental Health, 37(3), 327–406.
Li, S.-S., Zhang, Z.-Y., Yang, C.-J., Lian, H.-Y., & Cai, P. (2013). Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF-EMF exposure. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 758(1–2), 95–103.
Lupi, D., Palamara Mesiano, M., Adani, A., Benocci, R., Giacchini, R., Parenti, P., Zambon, G., Lavazza, A., Boniotti, M. B., Bassi, S., Colombo, M., & Tremolada, P. (2021a). Combined Effects of Pesticides and Electromagnetic-Fields on Honeybees: Multi-Stress Exposure. Insects, 12(8), 716.
Lupi, D., Palamara Mesiano, M., Adani, A., Benocci, R., Giacchini, R., Parenti, P., Zambon, G., Lavazza, A., Boniotti, M. B., Bassi, S., Colombo, M., & Tremolada, P. (2021b). Combined Effects of Pesticides and Electromagnetic-Fields on Honeybees: Multi-Stress Exposure. Insects, 12(8), 716.
Manta, A. K., Papadopoulou, D., Polyzos, A. P., Fragopoulou, A. F., Skouroliakou, A. S., Thanos, D., Stravopodis, D. J., & Margaritis, L. H. (2017). Mobile-phone radiation-induced perturbation of gene-expression profiling, redox equilibrium and sporadic-apoptosis control in the ovary of Drosophila melanogaster. Fly, 11(2), 75–95.
Migdał, P., Berbeć, E., Bieńkowski, P., Plotnik, M., Murawska, A., & Latarowski, K. (2022a). Exposure to Magnetic Fields Changes the Behavioral Pattern in Honeybees (Apis mellifera L.) under Laboratory Conditions. Animals: An Open Access Journal from MDPI, 12(7), 855.
Migdał, P., Berbeć, E., Bieńkowski, P., Plotnik, M., Murawska, A., & Latarowski, K. (2022b). Exposure to Magnetic Fields Changes the Behavioral Pattern in Honeybees (Apis mellifera L.) under Laboratory Conditions. Animals: An Open Access Journal from MDPI, 12(7), 855.
Santhosh Kumar, S. (2018). Colony Collapse Disorder (CCD) in Honey BeesCaused by EMF Radiation. Bioinformation, 14(9), 421–424. https://doi.org/10.6026/97320630014521
Thielens, A., Bell, D., Mortimore, D. B., Greco, M. K., Martens, L., & Joseph, W. (2018). Exposure of Insects to Radio-Frequency Electromagnetic Fields from 2 to 120 GHz. Scientific Reports, 8(1), 3924. https://doi.org/10.1038/s41598-018-22271-3
Thielens A, Greco MK, Verloock L, Martens L, Joseph W. Radio-Frequency Electromagnetic Field Exposure of Western Honey Bees. Scientific Reports. 2020 Jan 16;10(1):461.
Waldmann-Selsam, C., Balmori-de la Puente, A., Breunig, H., & Balmori, A. (2016). Radiofrequency radiation injures trees around mobile phone base stations. Science of The Total Environment, 572, 554–569.
Wang, Y., Jiang, Z., Zhang, L., Zhang, Z., Liao, Y., & Cai, P. (2022a). 3.5-GHz radiofrequency electromagnetic radiation promotes the development of Drosophila melanogaster. Environmental Pollution (Barking, Essex: 1987), 294, 118646.
Wang, Y., Jiang, Z., Zhang, L., Zhang, Z., Liao, Y., & Cai, P. (2022b). 3.5-GHz radiofrequency electromagnetic radiation promotes the development of Drosophila melanogaster. Environmental Pollution (Barking, Essex: 1987), 294, 118646.
Wang, Y., Zhang, H., Zhang, Z., Sun, B., Tang, C., Zhang, L., Jiang, Z., Ding, B., Liao, Y., & Cai, P. (2021). Simulated mobile communication frequencies (3.5 GHz) emitted by a signal generator affects the sleep of Drosophila melanogaster. Environmental Pollution (Barking, Essex: 1987), 283, 117087.
Wiltschko, R., Thalau, P., Gehring, D., Nießner, C., Ritz, T., & Wiltschko, W. (2015). Magnetoreception in birds: The effect of radio-frequency fields. Journal of The Royal Society Interface, 12(103), 20141103.
Cell Phones
Carlberg, M., & Hardell, L. (2014). Decreased Survival of Glioma Patients with Astrocytoma Grade IV (Glioblastoma Multiforme) Associated with Long-Term Use of Mobile and Cordless Phones. International Journal of Environmental Research and Public Health, 11(10), 10790–10805.
Carlberg, M., & Hardell, L. (2017). Evaluation of Mobile Phone and Cordless Phone Use and Glioma Risk Using the Bradford Hill Viewpoints from 1965 on Association or Causation. BioMed Research International, 2017, 9218486.
Chavdoula, E. D., Panagopoulos, D. J., & Margaritis, L. H. (2010). Comparison of biological effects between continuous and intermittent exposure to GSM-900-MHz mobile phone radiation: Detection of apoptotic cell-death features. Mutation Research, 700(1–2), 51–61.
Coureau, G., Bouvier, G., Lebailly, P., Fabbro-Peray, P., Gruber, A., Leffondre, K., Guillamo, J.-S., Loiseau, H., Mathoulin-Pélissier, S., Salamon, R., & Baldi, I. (2014). Mobile phone use and brain tumours in the CERENAT case-control study. Occupational and Environmental Medicine, 71(7), 514–522.
Gandhi, O. P. (2019). Microwave Emissions From Cell Phones Exceed Safety Limits in Europe and the US When Touching the Body. IEEE Access, 7, 47050–47052.
Hardell, L., & Carlberg, M. (2015). Mobile phone and cordless phone use and the risk for glioma – Analysis of pooled case-control studies in Sweden, 1997–2003 and 2007–2009. Pathophysiology, 22(1), 1–13.
Hardell, L., & Carlberg, M. (2019). Comments on the US National Toxicology Program technical reports on toxicology and carcinogenesis study in rats exposed to whole-body radiofrequency radiation at 900 MHz and in mice exposed to whole-body radiofrequency radiation at 1,900 MHz. International Journal of Oncology, 54(1), 111–127.
Panagopoulos, D. J., Chavdoula, E. D., Nezis, I. P., & Margaritis, L. H. (2007). Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation. Mutation Research, 626(1–2), 69–78.
Panagopoulos, D. J., Johansson, O., & Carlo, G. L. (2013). Evaluation of Specific Absorption Rate as a Dosimetric Quantity for Electromagnetic Fields Bioeffects. PLOS ONE, 8(6), e62663.
Panagopoulos, D. J., Johansson, O., & Carlo, G. L. (2015). Real versus Simulated Mobile Phone Exposures in Experimental Studies. BioMed Research International, 2015, 607053.
Wall, S., Wang, Z.-M., Kendig, T., Dobraca, D., & Lipsett, M. (2019). Real-world cell phone radiofrequency electromagnetic field exposures. Environmental Research, 171, 581–592.
Schools
Bellieni, C. V., Pinto, I., Bogi, A., Zoppetti, N., Andreuccetti, D., & Buonocore, G. (2012). Exposure to Electromagnetic Fields From Laptop Use of “Laptop” Computers. Archives of Environmental & Occupational Health, 67(1), 31–36.
Clegg, F. M., Sears, M., Friesen, M., Scarato, T., Metzinger, R., Russell, C., Stadtner, A., & Miller, A. B. (2020). Building science and radiofrequency radiation: What makes smart and healthy buildings. Building and Environment, 176, 106324.
Hedendahl, L. K., Carlberg, M., Koppel, T., & Hardell, L. (2017). Measurements of Radiofrequency Radiation with a Body-Borne Exposimeter in Swedish Schools with Wi-Fi. Frontiers in Public Health, 5.
Park, J., Jeong, E., & Seomun, G. (2020). Extremely Low-Frequency Magnetic Fields Exposure Measurement during Lessons in Elementary Schools. International Journal of Environmental Research and Public Health, 17(15), 5284.
Wi-Fi 2.45 GHz
Akdag, M. Z., Dasdag, S., Canturk, F., Karabulut, D., Caner, Y., & Adalier, N. (2016). Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? Journal of Chemical Neuroanatomy, 75(Pt B), 116–122.
Atasoy, H. I., Gunal, M. Y., Atasoy, P., Elgun, S., & Bugdayci, G. (2013). Immunohistopathologic demonstration of deleterious effects on growing rat testes of radiofrequency waves emitted from conventional Wi-Fi devices. Journal of Pediatric Urology, 9(2), 223–229.
Avendaño, C., Mata, A., Sanchez Sarmiento, C. A., & Doncel, G. F. (2012). Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertility and Sterility, 97(1), 39-45.e2.
Bamikole, A. O., Olukayode, O. A., Obajuluwa, T., Pius, O., Ibidun, O. O., Adewale, F. O., & Adeleke, O. O. (2019). Exposure to a 2.5 GHz Non-ionizing Electromagnetic Field Alters Hematological Profiles, Biochemical Parameters, and Induces Oxidative Stress in Male Albino Rats. Biomedical and Environmental Sciences, 32(11), 860–863.
Çelik, Ö., Kahya, M. C., & Nazıroğlu, M. (2016). Oxidative stress of brain and liver is increased by Wi-Fi (2.45GHz) exposure of rats during pregnancy and the development of newborns. Journal of Chemical Neuroanatomy, 75(Pt B), 134–139.
Dasdag, S., Akdag, M. Z., Erdal, M. E., Erdal, N., Ay, O. I., Ay, M. E., Yilmaz, S. G., Tasdelen, B., & Yegin, K. (2015). Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue. International Journal of Radiation Biology, 91(7), 555–561.
Fahmy, H., & Mohammed, F. (2021). Hepatic injury induced by radio frequency waves emitted from conventional Wi-Fi devices in Wistar rats. Human & Experimental Toxicology, 40(1), 136–147.
Gumral, N., Naziroglu, M., Koyu, A., Ongel, K., Celik, O., Saygin, M., Kahriman, M., Caliskan, S., Kayan, M., Gencel, O., & Flores-Arce, M. F. (2009). Effects of selenium and L-carnitine on oxidative stress in blood of rat induced by 2.45-GHz radiation from wireless devices. Biological Trace Element Research, 132(1–3), 153–163.
Gupta, S. K., Patel, S. K., Tomar, M. S., Singh, S. K., Mesharam, M. K., & Krishnamurthy, S. (2019). Long-term exposure of 2450 MHz electromagnetic radiation induces stress and anxiety like behavior in rats. Neurochemistry International, 128, 1–13.
Gupta, V., & Srivastava, R. (2022). 2.45 GHz microwave radiation induced oxidative stress: Role of inflammatory cytokines in regulating male fertility through estrogen receptor alpha in Gallus gallus domesticus. Biochemical and Biophysical Research Communications, 629, 61–70.
Hassanshahi, A., Shafeie, S. A., Fatemi, I., Hassanshahi, E., Allahtavakoli, M., Shabani, M., Roohbakhsh, A., & Shamsizadeh, A. (2017). The effect of Wi-Fi electromagnetic waves in unimodal and multimodal object recognition tasks in male rats. Neurological Sciences, 38(6), 1069–1076.
Ibitayo, A. O., Afolabi, O. B., Akinyemi, A. J., Ojiezeh, T. I., Adekoya, K. O., & Ojewunmi, O. O. (2017). RAPD Profiling, DNA Fragmentation, and Histomorphometric Examination in Brains of Wistar Rats Exposed to Indoor 2.5 Ghz Wi-Fi Devices Radiation. BioMed Research International, 2017, 8653286.
Jaffar, F. H. F., Osman, K., Ismail, N. H., Chin, K.-Y., & Ibrahim, S. F. (2019). Adverse Effects of Wi-Fi Radiation on Male Reproductive System: A Systematic Review. The Tohoku Journal of Experimental Medicine, 248(3), 169–179.
Kuybulu, A. E., Öktem, F., Çiriş, İ. M., Sutcu, R., Örmeci, A. R., Çömlekçi, S., & Uz, E. (2016). Effects of long-term pre- and post-natal exposure to 2.45 GHz wireless devices on developing male rat kidney. Renal Failure, 38(4), 571–580.
Naziroğlu, M., & Gümral, N. (2009). Modulator effects of L-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. International Journal of Radiation Biology, 85(8), 680–689.
Pall, M. L. (2018). Wi-Fi is an important threat to human health. Environmental Research, 164, 405–416.
Papageorgiou, C. C., Hountala, C. D., Maganioti, A. E., Kyprianou, M. A., Rabavilas, A. D., Papadimitriou, G. N., & Capsalis, C. N. (2011). Effects of wi-fi signals on the p300 component of event-related potentials during an auditory hayling task. Journal of Integrative Neuroscience, 10(02), 189–202.
Saili, L., Hanini, A., Smirani, C., Azzouz, I., Azzouz, A., Sakly, M., Abdelmelek, H., & Bouslama, Z. (2015). Effects of acute exposure to WIFI signals (2.45GHz) on heart variability and blood pressure in Albinos rabbit. Environmental Toxicology and Pharmacology, 40(2), 600–605.
Sangun, O., Dundar, B., Darici, H., Comlekci, S., Doguc, D. K., & Celik, S. (2015). The effects of long-term exposure to a 2450 MHz electromagnetic field on growth and pubertal development in female Wistar rats. Electromagnetic Biology and Medicine, 34(1), 63–71.
Shahin, S., Banerjee, S., Swarup, V., Singh, S. P., & Chaturvedi, C. M. (2018). From the Cover: 2.45-GHz Microwave Radiation Impairs Hippocampal Learning and Spatial Memory: Involvement of Local Stress Mechanism-Induced Suppression of iGluR/ERK/CREB Signaling. Toxicological Sciences, 161(2), 349–374.
Siervo, B., Morelli, M. S., Landini, L., & Hartwig, V. (2018). Numerical evaluation of human exposure to WiMax patch antenna in tablet or laptop. Bioelectromagnetics, 39(5), 414–422.
Yorgancilar, E., Dasdag, S., Akdag, M. Z., Akkus, Z., Akdag, M., & Topcu, I. (2017). Does all-day and long-term exposure to radiofrequency radiation emitted from Wi-Fi affect hearing? Biotechnology & Biotechnological Equipment, 31(6), 1204–1209.
Yüksel, M., Nazıroğlu, M., & Özkaya, M. O. (2016). Long-term exposure to electromagnetic radiation from mobile phones and Wi-Fi devices decreases plasma prolactin, progesterone, and estrogen levels but increases uterine oxidative stress in pregnant rats and their offspring. Endocrine, 52(2), 352–362.
NICU and Incubators
Bellieni, C. V., Acampa, M., Maffei, M., Maffei, S., Perrone, S., Pinto, I., Stacchini, N., & Buonocore, G. (2008). Electromagnetic fields produced by incubators influence heart rate variability in newborns. Archives of Disease in Childhood – Fetal and Neonatal Edition, 93(4), F298–F301.
Bellieni, C. V., Nardi, V., Buonocore, G., Di Fabio, S., Pinto, I., & Verrotti, A. (2019). Electromagnetic fields in neonatal incubators: The reasons for an alert. The Journal of Maternal-Fetal & Neonatal Medicine: The Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 32(4), 695–699.
Bellieni, C. V., Tei, M., Iacoponi, F., Tataranno, M. L., Negro, S., Proietti, F., Longini, M., Perrone, S., & Buonocore, G. (2012). Is newborn melatonin production influenced by magnetic fields produced by incubators? Early Human Development, 88(8), 707–710.
Besset, D., Selmaoui, B., Tourneux, P., Leke, A., Delanaud, S., de Seze, R., & Stephan Blanchard, E. (2020). Environmental radiofrequency electromagnetic field levels in a department of pediatrics. Environmental Research, 181, 108894.
Calvente, I., Vázquez-Pérez, A., Fernández, M. F., Núñez, M. I., & Múñoz-Hoyos, A. (2017). Radiofrequency exposure in the Neonatal Medium Care Unit. Environmental Research, 152, 66–72.
Passi, R., Doheny, K. K., Gordin, Y., Hinssen, H., & Palmer, C. (2017). Electrical Grounding Improves Vagal Tone in Preterm Infants. Neonatology, 112(2), 187–192.
Cell Towers
Abdel-Rassoul, G., El-Fateh, O. A., Salem, M. A., Michael, A., Farahat, F., El-Batanouny, M., & Salem, E. (2007). Neurobehavioral effects among inhabitants around mobile phone base stations. NeuroToxicology, 28(2), 434–440.
Balmori A. Evidence for a health risk by RF on humans living around mobile phone base stations: From radiofrequency sickness to cancer Environ Res. 2022 Nov; 214
Dode, A. C., Leão, M. M. D., Tejo, F. de A. F., Gomes, A. C. R., Dode, D. C., Dode, M. C., Moreira, C. W., Condessa, V. A., Albinatti, C., & Caiaffa, W. T. (2011). Mortality by neoplasia and cellular telephone base stations in the Belo Horizonte municipality, Minas Gerais state, Brazil. Science of The Total Environment, 409(19), 3649–3665.
Hardell, L., & Carlberg, M. (2019). Comments on the US National Toxicology Program technical reports on toxicology and carcinogenesis study in rats exposed to whole-body radiofrequency radiation at 900 MHz and in mice exposed to whole-body radiofrequency radiation at 1,900 MHz. International Journal of Oncology, 54(1), 111–127.
Hardell, L., & Koppel, T. (2022). Electromagnetic hypersensitivity close to mobile phone base stations – a case study in Stockholm, Sweden. Reviews on Environmental Health.
Khurana, V. G., Hardell, L., Everaert, J., Bortkiewicz, A., Carlberg, M., & Ahonen, M. (2010). Epidemiological evidence for a health risk from mobile phone base stations. International Journal of Occupational and Environmental Health, 16(3), 263–267.
Koppel, T., Ahonen, M., Carlberg, M., & Hardell, L. (2022). Very high radiofrequency radiation at Skeppsbron in Stockholm, Sweden from mobile phone base station antennas positioned close to pedestrians’ heads. Environmental Research, 208, 112627.
Levitt, B. B., & Lai, H. (2011). Corrigendum: Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environmental Reviews, 19(NA), 495–495.
López, I., Félix, N., Rivera, M., Alonso, A., & Maestú, C. (2021). What is the radiation before 5G? A correlation study between measurements in situ and in real time and epidemiological indicators in Vallecas, Madrid. Environmental Research, 194, 110734.
Meo, S. A., Almahmoud, M., Alsultan, Q., Alotaibi, N., Alnajashi, I., & Hajjar, W. M. (2019). Mobile Phone Base Station Tower Settings Adjacent to School Buildings: Impact on Students’ Cognitive Health. American Journal of Men’s Health, 13(1), 1557988318816914.
Meo, S. A., Alsubaie, Y., Almubarak, Z., Almutawa, H., AlQasem, Y., & Hasanato, R. M. (2015a). Association of Exposure to Radio-Frequency Electromagnetic Field Radiation (RF-EMFR) Generated by Mobile Phone Base Stations with Glycated Hemoglobin (HbA1c) and Risk of Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health, 12(11), 14519–14528.
Meo, S. A., Alsubaie, Y., Almubarak, Z., Almutawa, H., AlQasem, Y., & Hasanato, R. M. (2015b). Association of Exposure to Radio-Frequency Electromagnetic Field Radiation (RF-EMFR) Generated by Mobile Phone Base Stations with Glycated Hemoglobin (HbA1c) and Risk of Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health, 12(11), 14519–14528.
Pearce, J. M. (2020). Limiting liability with positioning to minimize negative health effects of cellular phone towers. Environmental Research, 181, 108845.
Roda, C., & Perry, S. (2014). Mobile phone infrastructure regulation in Europe: Scientific challenges and human rights protection. Environmental Science & Policy, 37, 204–214.
Rodrigues, N. C. P., Dode, A. C., de Noronha Andrade, M. K., O’Dwyer, G., Monteiro, D. L. M., Reis, I. N. C., Rodrigues, R. P., Frossard, V. C., & Lino, V. T. S. (2021). The Effect of Continuous Low-Intensity Exposure to Electromagnetic Fields from Radio Base Stations to Cancer Mortality in Brazil. International Journal of Environmental Research and Public Health, 18(3), 1229.
Santini, R., Santini, P., Le Ruz, P., Danze, J. M., & Seigne, M. (2003). Survey Study of People Living in the Vicinity of Cellular Phone Base Stations. Electromagnetic Biology and Medicine, 22(1), 41–49.
Yakymenko, I., Sidorik, E., Kyrylenko, S., & Chekhun, V. (2011). Long-term exposure to microwave radiation provokes cancer growth: Evidences from radars and mobile communication systems. Experimental Oncology, 33(2), 62–70.
Zothansiama, Zosangzuali, M., Lalramdinpuii, M., & Jagetia, G. C. (2017). Impact of radiofrequency radiation on DNA damage and antioxidants in peripheral blood lymphocytes of humans residing in the vicinity of mobile phone base stations. Electromagnetic Biology and Medicine, 36(3), 295–305.
Wireless Headsets and Wearables
Lan, J. Q., Liang, X., Hong, T., & Du, G. H. (2018). On the effects of glasses on the SAR in human head resulting from wireless eyewear devices at phone call state. Progress in Biophysics and Molecular Biology, 136, 29–36.
Sage, C., & Hardell, L. (2018). Fatal collision? Are wireless headsets a risk in treating patients? Electromagnetic Biology and Medicine, 37(2), 95–99.
4G LTE
Broom, K. A., Findlay, R., Addison, D. S., Goiceanu, C., & Sienkiewicz, Z. (2019). Early-Life Exposure to Pulsed LTE Radiofrequency Fields Causes Persistent Changes in Activity and Behavior in C57BL/6 J Mice. Bioelectromagnetics, 40(7), 498–511.
Choi, J., Min, K., Jeon, S., Kim, N., Pack, J.-K., & Song, K. (2020). Continuous Exposure to 1.7 GHz LTE Electromagnetic Fields Increases Intracellular Reactive Oxygen Species to Decrease Human Cell Proliferation and Induce Senescence. Scientific Reports, 10(1), 9238.
Lv, B., Chen, Z., Wu, T., Shao, Q., Yan, D., Ma, L., Lu, K., & Xie, Y. (2014). The alteration of spontaneous low frequency oscillations caused by acute electromagnetic fields exposure. Clinical Neurophysiology, 125(2), 277–286.
Malik, S., Pati, A. K., & Parganiha, A. (2021). Short- and long-duration exposures to cell-phone radiofrequency waves produce dichotomous effects on phototactic response and circadian characteristics of locomotor activity rhythm in zebrafish, Danio rerio. Biological Rhythm Research, 52(10), 1560–1575.
Oh, J. J., Byun, S.-S., Lee, S. E., Choe, G., & Hong, S. K. (2018). Effect of Electromagnetic Waves from Mobile Phones on Spermatogenesis in the Era of 4G-LTE. BioMed Research International, 2018, 1801798.
Özdemir, E., Çömelekoğlu, Ü., Degirmenci, E., Bayrak, G., Yildirim, M., Ergenoglu, T., Coşkun Yılmaz, B., Korunur Engiz, B., Yalin, S., Koyuncu, D. D., & Ozbay, E. (2021). The effect of 4.5 G (LTE Advanced-Pro network) mobile phone radiation on the optic nerve. Cutaneous and Ocular Toxicology, 40(3), 198–206. https://doi.org/10.1080/15569527.2021.1895825
Souffi, S., Lameth, J., Gaucher, Q., Arnaud-Cormos, D., Lévêque, P., Edeline, J.-M., & Mallat, M. (2022). Exposure to 1800 MHz LTE electromagnetic fields under proinflammatory conditions decreases the response strength and increases the acoustic threshold of auditory cortical neurons. Scientific Reports, 12(1), 4063.
Wei, Y., Yang, J., Chen, Z., Wu, T., & Lv, B. (2019). Modulation of resting-state brain functional connectivity by exposure to acute fourth-generation long-term evolution electromagnetic field: An fMRI study. Bioelectromagnetics, 40(1), 42–51.
Yang, L., Zhang, C., Chen, Z., Li, C., & Wu, T. (2021). Functional and network analyses of human exposure to long-term evolution signal. Environmental Science and Pollution Research International, 28(5), 5755–5773.
Yang, L., Chen, Q., Lv, B., & Wu, T. (2017). Long-Term Evolution Electromagnetic Fields Exposure Modulates the Resting State EEG on Alpha and Beta Bands. Clinical EEG and Neuroscience, 48(3), 168–175.
Yu, G., Tang, Z., Chen, H., Chen, Z., Wang, L., Cao, H., Wang, G., Xing, J., Shen, H., Cheng, Q., Li, D., Wang, G., Xiang, Y., Guan, Y., Zhu, Y., Liu, Z., & Bai, Z. (2020). Long-term exposure to 4G smartphone radiofrequency electromagnetic radiation diminished male reproductive potential by directly disrupting Spock3–MMP2-BTB axis in the testes of adult rats. Science of The Total Environment, 698, 133860.
5G
Hinrikus, H., Koppel, T., Lass, J., Orru, H., Roosipuu, P., & Bachmann, M. (2022). Possible health effects on the human brain by various generations of mobile telecommunication: A review based estimation of 5G impact. International Journal of Radiation Biology, 98(7), 1210–1221.
Kostoff, R. N., Heroux, P., Aschner, M., & Tsatsakis, A. (2020). Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicology Letters, 323, 35–40.
Nasim, I., & Kim, S. (2019). Adverse Impacts of 5G Downlinks on Human Body. 2019 SoutheastCon, 1–6.
Betzalel, N., Ben Ishai, P., & Feldman, Y. (2018). The human skin as a sub-THz receiver—Does 5G pose a danger to it or not? Environmental Research, 163, 208–216.
Betzalel, N., Feldman, Y., & Ishai, P. B. (2017). The Modeling of the Absorbance of Sub-THz Radiation by Human Skin. IEEE Transactions on Terahertz Science and Technology, 7(5), 521–528.
Dasgupta, S., Leong, C., Simonich, M. T., Truong, L., Liu, H., & Tanguay, R. L. (2022). Transcriptomic and Long-Term Behavioral Deficits Associated with Developmental 3.5 GHz Radiofrequency Radiation Exposures in Zebrafish. Environmental Science & Technology Letters, 9(4), 327–332.
Di Ciaula, A. (2018). Towards 5G communication systems: Are there health implications? International Journal of Hygiene and Environmental Health, 221(3), 367–375.
Frank, J. W. (2021). Electromagnetic fields, 5G and health: What about the precautionary principle? J Epidemiol Community Health, 75(6), 562–566.
Hardell, L., & Carlberg, M. (2020). [Comment] Health risks from radiofrequency radiation, including 5G, should be assessed by experts with no conflicts of interest. Oncology Letters, 20(4), 1–1.
Russell, C. L. (2018). 5 G wireless telecommunications expansion: Public health and environmental implications. Environmental Research, 165, 484–495.
Wojcik, D., Maisch, D., Pockett, S., Bandara, P., Mccredden, J., May, M., Leach, V., Weller, S., Kelly, R., & Chandler, T. (2020). Serious Safety Concerns about 5G Wireless Deployment in Australia and New Zealand. 37, 47–54.
Yang, H., Zhang, Y., Wu, X., Gan, P., Luo, X., Zhong, S., & Zuo, W. (2022). Effects of Acute Exposure to 3500 MHz (5G) Radiofrequency Electromagnetic Radiation on Anxiety-Like Behavior and the Auditory Cortex in Guinea Pigs. Bioelectromagnetics, 43(2), 106–118.
Increasing Exposures From Expanding Networks and Close Proximity Antennas
Baltrėnas, P., Buckus, R., & Vasarevičius, S. (2012). Research and evaluation of the intensity parameters of electromagnetic fields produced by mobile communication antennas. Journal of Environmental Engineering and Landscape Management, 20(4), 273–284.
Bhatt, C. R., Redmayne, M., Billah, B., Abramson, M. J., & Benke, G. (2017). Radiofrequency-electromagnetic field exposures in kindergarten children. Journal of Exposure Science & Environmental Epidemiology, 27(5), 497–504.
Bonato, M., Dossi, L., Fiocchi, S., Gallucci, S., Benini, M., Chiaramello, E., Tognola, G., & Parazzini, M. (2022). Computational Assessment of RF Exposure Levels due to 5G Mobile Phones. 2022 Microwave Mediterranean Symposium (MMS), 1–4.
Carlberg, M., Hedendahl, L., Koppel, T., & Hardell, L. (2019). High ambient radiofrequency radiation in Stockholm city, Sweden. Oncology Letters, 17(2), 1777–1783.
El-Hajj, A. M., & Naous, T. (2020). Radiation Analysis in a Gradual 5G Network Deployment Strategy. 2020 IEEE 3rd 5G World Forum (5GWF), 448–453.
Hardell, L., Carlberg, M., & Hedendahl, L. K. (2018). Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: A case report. Oncology Letters, 15(5), 7871–7883.
Hardell, L., Carlberg, M., Koppel, T., & Hedendahl, L. (2017). High radiofrequency radiation at Stockholm Old Town: An exposimeter study including the Royal Castle, Supreme Court, three major squares and the Swedish Parliament. Molecular and Clinical Oncology, 6(4), 462–476.
Hardell, L., Koppel, T., Carlberg, M., Ahonen, M., & Hedendahl, L. (2016). Radiofrequency radiation at Stockholm Central Railway Station in Sweden and some medical aspects on public exposure to RF fields. International Journal of Oncology, 49(4), 1315–1324.
Koppel, T., Ahonen, M., Carlberg, M., & Hardell, L. (2022). Very high radiofrequency radiation at Skeppsbron in Stockholm, Sweden from mobile phone base station antennas positioned close to pedestrians’ heads. Environmental Research, 208, 112627.
Koppel, T., Ahonen, M., Carlberg, M., Hedendahl, L. K., & Hardell, L. (2019). Radiofrequency radiation from nearby mobile phone base stations-a case comparison of one low and one high exposure apartment. Oncology Letters, 18(5), 5383–5391.
Koppel, T., & Hardell, L. (2022). Measurements of radiofrequency electromagnetic fields, including 5G, in the city of Columbia, SC, USA. World Academy of Sciences Journal, 4(3), 1–12.
Mazloum, T., Aerts, S., Joseph, W., & Wiart, J. (2019). RF-EMF exposure induced by mobile phones operating in LTE small cells in two different urban cities. Annals of Telecommunications, 74(1), 35–42.
Urbinello, D., Joseph, W., Verloock, L., Martens, L., & Röösli, M. (2014). Temporal trends of radio-frequency electromagnetic field (RF-EMF) exposure in everyday environments across European cities. Environmental Research, 134, 134–142.
Blue Light and Light at Night
Fonken, L. K., & Nelson, R. J. (2014). The effects of light at night on circadian clocks and metabolism. Endocrine Reviews, 35(4), 648–670.
Garcia, -Saenz Ariadna, S, ánchez de M. A., Espinosa, A., Valentin, A., Aragon, és N., Llorca, J., Amiano, P., Mart, ín S. V., Guevara, M., Capelo, R., Tard, ón A., Peir, ó-P. R., Jim, énez-M. J. J., Roca, -Barceló Aina, P, érez-G. B., Dierssen, -Sotos Trinidad, Fern, ández-V. T., Moreno, -Iribas Conchi, Moreno, V., … Kogevinas, M. (n.d.). Evaluating the Association between Artificial Light-at-Night Exposure and Breast and Prostate Cancer Risk in Spain (MCC-Spain Study). Environmental Health Perspectives, 126(4), 047011.
Garcia-Saenz, A., de Miguel, A. S., Espinosa, A., Costas, L., Aragonés, N., Tonne, C., Moreno, V., Pérez-Gómez, B., Valentin, A., Pollán, M., Castaño-Vinyals, G., Aubé, M., & Kogevinas, M. (2020). Association Between Outdoor Light-at-night Exposure and Colorectal Cancer in Spain. Epidemiology, 31(5), 718–727.
Heo, J.-Y., Kim, K., Fava, M., Mischoulon, D., Papakostas, G. I., Kim, M.-J., Kim, D. J., Chang, K.-A. J., Oh, Y., Yu, B.-H., & Jeon, H. J. (2017). Effects of smartphone use with and without blue light at night in healthy adults: A randomized, double-blind, cross-over, placebo-controlled comparison. Journal of Psychiatric Research, 87, 61–70.
Höhn, C., Schmid, S. R., Plamberger, C. P., Bothe, K., Angerer, M., Gruber, G., Pletzer, B., & Hoedlmoser, K. (2021). Preliminary Results: The Impact of Smartphone Use and Short-Wavelength Light during the Evening on Circadian Rhythm, Sleep and Alertness. Clocks & Sleep, 3(1), 66–86.
Lunn, R. M., Blask, D. E., Coogan, A. N., Figueiro, M. G., Gorman, M. R., Hall, J. E., Hansen, J., Nelson, R. J., Panda, S., Smolensky, M. H., Stevens, R. G., Turek, F. W., Vermeulen, R., Carreón, T., Caruso, C. C., Lawson, C. C., Thayer, K. A., Twery, M. J., Ewens, A. D., … Boyd, W. A. (2017). Health consequences of electric lighting practices in the modern world: A report on the National Toxicology Program’s workshop on shift work at night, artificial light at night, and circadian disruption. Science of The Total Environment, 607–608, 1073–1084.
Meng, Q., Lian, Y., Jiang, J., Wang, W., Hou, X., Pan, Y., Chu, H., Shang, L., Wei, X., & Hao, W. (2018). Blue light filtered white light induces depression-like responses and temporary spatial learning deficits in rats. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 17(4), 386–394.
Nakashima, Y., Ohta, S., & Wolf, A. M. (2017). Blue light-induced oxidative stress in live skin. Free Radical Biology & Medicine, 108, 300–310.
Nash, T. R., Chow, E. S., Law, A. D., Fu, S. D., Fuszara, E., Bilska, A., Bebas, P., Kretzschmar, D., & Giebultowicz, J. M. (2019). Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in Drosophila. Npj Aging and Mechanisms of Disease, 5(1), 1–8.
Okuliarova, M., Rumanova, V. S., Stebelova, K., & Zeman, M. (2020). Dim Light at Night Disturbs Molecular Pathways of Lipid Metabolism. International Journal of Molecular Sciences, 21(18), 6919.
Touitou, Y., & Point, S. (2020). Effects and mechanisms of action of light-emitting diodes on the human retina and internal clock. Environmental Research, 190, 109942.
Zhang, D., Jones, R. R., James, P., Kitahara, C. M., & Xiao, Q. (2021a). Associations between artificial light at night and risk for thyroid cancer: A large US cohort study. Cancer, 127(9), 1448–1458.
Zhang, D., Jones, R. R., James, P., Kitahara, C. M., & Xiao, Q. (2021b). Associations between artificial light at night and risk for thyroid cancer: A large US cohort study. Cancer, 127(9), 1448–1458.
Screentime
Barthorpe, A., Winstone, L., Mars, B., & Moran, P. (2020). Is social media screen time really associated with poor adolescent mental health? A time use diary study. Journal of Affective Disorders, 274, 864–870.
Boers, E., Afzali, M. H., Newton, N., & Conrod, P. (2019). Association of Screen Time and Depression in Adolescence. JAMA Pediatrics, 173(9), 853–859.
Carter, B., Rees, P., Hale, L., Bhattacharjee, D., & Paradkar, M. S. (2016). Association Between Portable Screen-Based Media Device Access or Use and Sleep Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatrics, 170(12), 1202–1208.
Chau, K., Bhattacherjee, A., Senapati, A., Guillemin, F., & Chau, N. (2022). Association between screen time and culminating school, behavior, and mental health difficulties in early adolescents: A population-based study. Psychiatry Research, 310, 114467.
Daniels, M., Sharma, M., & Batra, K. (2021). Social Media, Stress and Sleep Deprivation: A Triple “S” Among Adolescents. Journal of Health and Social Sciences, 6(2), 159–166.
Heffler, K. F., Sienko, D. M., Subedi, K., McCann, K. A., & Bennett, D. S. (2020). Association of Early-Life Social and Digital Media Experiences With Development of Autism Spectrum Disorder–Like Symptoms. JAMA Pediatrics, 174(7), 690–696.
Hisler, G. C., Hasler, B. P., Franzen, P. L., Clark, D. B., & Twenge, J. M. (2020). Screen media use and sleep disturbance symptom severity in children. Sleep Health, 6(6), 731–742.
Horowitz-Kraus, T., & Hutton, J. S. (2018). Brain connectivity in children is increased by the time they spend reading books and decreased by the length of exposure to screen-based media. Acta Paediatrica (Oslo, Norway: 1992), 107(4), 685–693.
Hutton, J. S., Dudley, J., Horowitz-Kraus, T., DeWitt, T., & Holland, S. K. (2020). Associations Between Screen-Based Media Use and Brain White Matter Integrity in Preschool-Aged Children. JAMA Pediatrics, 174(1), e193869.
Junco, R., & Cotten, S. R. (2012). No A 4 U: The relationship between multitasking and academic performance. Computers & Education, 59(2), 505–514.
Kelly, Y., Zilanawala, A., Booker, C., & Sacker, A. (2018). Social Media Use and Adolescent Mental Health: Findings From the UK Millennium Cohort Study. EClinicalMedicine, 6, 59–68.
Lee, S., Kim, S., Yang, S., & Shin, Y. (2022). Effects of Frequent Smartphone Use on Sleep Problems in Children under 7 Years of Age in Korea: A 4-Year Longitudinal Study. International Journal of Environmental Research and Public Health, 19(16), 10252.
Lissak, G. (2018). Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environmental Research, 164, 149–157.
Luby, J., & Kertz, S. (2019). Increasing Suicide Rates in Early Adolescent Girls in the United States and the Equalization of Sex Disparity in Suicide: The Need to Investigate the Role of Social Media. JAMA Network Open, 2(5), e193916.
Madigan, S., Browne, D., Racine, N., Mori, C., & Tough, S. (2019). Association Between Screen Time and Children’s Performance on a Developmental Screening Test. JAMA Pediatrics, 173(3), 244–250.
Mireku, M. O., Barker, M. M., Mutz, J., Dumontheil, I., Thomas, M. S. C., Röösli, M., Elliott, P., & Toledano, M. B. (2019). Night-time screen-based media device use and adolescents’ sleep and health-related quality of life. Environment International, 124, 66–78.
Moreno, M. A. (2016). Media Use and Sleep. JAMA Pediatrics, 170(12), 1236.
Mueller, P. A., & Oppenheimer, D. M. (2014). The pen is mightier than the keyboard: Advantages of longhand over laptop note taking. Psychological Science, 25(6), 1159–1168.
Onyeaka, H. K., Muoghalu, C., Baiden, P., Okine, L., Szlyk, H. S., Peoples, J. E., Kasson, E., Cavazos-Rehg, M. S. W. P., Firth, J., & Torous, J. (2022). Excessive screen time behaviors and cognitive difficulties among adolescents in the United States: Results from the 2017 and 2019 national youth risk behavior survey. Psychiatry Research, 316, 114740.
Ophir, E., Nass, C., & Wagner, A. D. (2009). Cognitive control in media multitaskers. Proceedings of the National Academy of Sciences, 106(37), 15583–15587.
Orben, A., Przybylski, A. K., Blakemore, S.-J., & Kievit, R. A. (2022). Windows of developmental sensitivity to social media. Nature Communications, 13(1), 1649.
Schoeni, A., Roser, K., & Röösli, M. (2015). Symptoms and Cognitive Functions in Adolescents in Relation to Mobile Phone Use during Night. PloS One, 10(7), e0133528.
Stiglic, N., & Viner, R. M. (2019). Effects of screentime on the health and well-being of children and adolescents: A systematic review of reviews. BMJ Open, 9(1), e023191.
Tamana, S. K., Ezeugwu, V., Chikuma, J., Lefebvre, D. L., Azad, M. B., Moraes, T. J., Subbarao, P., Becker, A. B., Turvey, S. E., Sears, M. R., Dick, B. D., Carson, V., Rasmussen, C., Investigators, C. study, Pei, J., & Mandhane, P. J. (2019). Screen-time is associated with inattention problems in preschoolers: Results from the CHILD birth cohort study. PLOS ONE, 14(4), e0213995.
Twenge, J. M. (2020). Why increases in adolescent depression may be linked to the technological environment. Current Opinion in Psychology, 32, 89–94.
Twenge, J. M., Haidt, J., Lozano, J., & Cummins, K. M. (2022). Specification curve analysis shows that social media use is linked to poor mental health, especially among girls. Acta Psychologica, 224, 103512.
Uhls, Y. T., Michikyan, M., Morris, J., Garcia, D., Small, G. W., Zgourou, E., & Greenfield, P. M. (2014). Five days at outdoor education camp without screens improves preteen skills with nonverbal emotion cues. Computers in Human Behavior, 39, 387–392.
Zhao, J., Yu, Z., Sun, X., Wu, S., Zhang, J., Zhang, D., Zhang, Y., & Jiang, F. (2022). Association Between Screen Time Trajectory and Early Childhood Development in Children in China. JAMA Pediatrics, 176(8), 768–775.